Design Study of Piezoelectric Micro-machined Mechanically Coupled Cantilever Filters using a Combined Finite Element and Microwave Circuit Analysis
نویسندگان
چکیده
A new mechanical filter structure is presented which comprises two silicon cantilevers mechanically coupled by a silicon linkage with thin film piezoelectric transducers providing electrical input and output signals. The resonance behaviour of such a structure results in a bandpass filter response, having a band-width determined by the frequency separation between the closely spaced in-phase and out-of-phase vibrational modes of the two coupled cantilevers. A detailed configuration design analysis, filter simulation and optimisation of performance is undertaken using a new modelling approach combining microwave circuit theory and finite element analysis to evaluate the generalised (A, B, C and D) and scattering (S) circuit parameters of the filter. Two significant features of the filters have emerged from the derived analyses and simulations: (1) with correct design filter Q-values can reach several thousand which is much higher than the Q-values (~ 80) of uncoupled cantilevers, (2) the Q-value is determined by the configuration of the silicon linkage and so is under the designer’s control. The position and length of the linkage that give optimum Q and minimum insertion loss are determined.
منابع مشابه
An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملExperiment and Simulation Validated Analytical Equivalent Circuit Model for Piezoelectric Micro-Machined Ultrasonic Transducer
An analytical Mason equivalent circuit is derived for a circular, clamped plate piezoelectric micro-machined ultrasonic transducer (pMUT) design in 31 mode considering an arbitrary electrode configuration at any axisymmetric vibration mode. The explicit definition of lumped parameters based entirely on geometry, material properties and defined constants enables straightforward and wide ranging ...
متن کاملImproving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
متن کاملShape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester
The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...
متن کاملAnalyses of Power Output of Piezoelectric Energy Harvesting Devices Directly Connected to a Resistive Load Using a Coupled Piezoelectric-Circuit Finite Element Method
Analyses of Power Output of Piezoelectric Energy Harvesting Devices Directly Connected to a Resistive Load Using a Coupled Piezoelectric-Circuit Finite Element Method Meiling Zhu, Emma Worthington and James Njuguna Department of Materials, Department of Sustainable Systems Cranfield University, Bedfordshire, MK43 0AL UK Abstract A coupled piezoelectric-circuit finite element model (CPC-FEM) is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008